Quantcast
Channel: Fortinet GURU
Viewing all articles
Browse latest Browse all 2380

FortiGate-7060E Chassis

$
0
0

FortiGate-7060E Chassis

The FortiGate-7060E is a 8U 19-inch rackmount 6-slot chassis with a 80Gbps fabric and 1Gbps base backplane designed by Fortinet. The fabric backplane provides network data communication and the base backplane provides management and synch communication among the chassis slots.

FortiGate-7060E front panel

The chassis is managed by two redundant management modules. Each module includes an Ethernet connection as well as two switchable console ports that provide console connections to the modules in the chassis slots. The active management module controls chassis cooling and power management and provides an interface for managing the modules installed in the chassis.

FortiGate-7060E front panel, (example module configuration)

 

Do not operate the FortiGate-7060E chassis with open slots on the front or back panel. For optimum cooling performance and safety, each chassis slot must contain an FIM or FPM module or an FIM or FPM blank panel (also called a dummy card). For the same reason, all cooling fan trays, power supplies or power supply slot covers must be installed while the chassis is operating.

Power is provided to the chassis using four hot swappable 3+1 redundant 100-240 VAC, 50-60 Hz power supply units (PSUs). You can also optionally add up to six PSUs to provide 3+3 redundancy. The FortiGate-7060E can also be equipped with DC PSUs allowing you to connect the chassis to -48V DC power

The standard configuration of the FortiGate-7060E includes two FIM (interface) modules in chassis slots 1 and 2 and up to four FPM (processing) modules in chassis slots 3 to 6.

FIM modules

FIM modules are hot swappable interface modules that provide data and management interfaces, base backplane switching and fabric backplane session-aware load balancing for the chassis. The FIM modules include an integrated switch fabric and DP2 processors to load balance millions of data sessions over the chassis fabric backplane to FPM processor modules. The following FIM modules are available:

  • The FIM-7901E includes thirty-two front panel 10GigE SFP+ fabric channel interfaces (A1 to A32). These interfaces are connected to 10Gbps networks. These interfaces can also be configured to operate as Gigabit Ethernet interfaces using SFP transceivers.
  • The FIM-7904E includes eight front panel 40GigE QSFP+ fabric channel interfaces (B1 to B8). These interfaces are connected to 40Gbps networks. Using 40GBASE-SR4 multimode QSFP+ transceivers, each QSFP+ interface can also be split into four 10GBASE-SR interfaces and connected to 10Gbps networks.
  • The FIM-7910E (shown in FortiGate-7060E front panel, (example module configuration) on page 5) includes four front panel 100GigE CFP2 fabric channel interfaces (C1 to C4). These interfaces can be connected to 100Gbps networks. Using 100GBASE-SR10 multimode CFP2 transceivers, each CFP2 interface can also be split into ten 10GBASE-SR interfaces and connected to 10Gbps networks.
  • The FIM-7920E includes four front panel 100GigE QSFP28 fabric channel interfaces (C1 to C4). These interfaces can be connected to 100Gbps networks. Using a 100GBASE-SR4 QSFP28 or 40GBASE-SR4 QSFP+ transceiver, each QSFP28 interface can also be split into four 10GBASE-SR interfaces and connected to 10Gbps networks.

If you are installing different FIM modules in the FortiGate-7060E chassis, for optimal configuration you should install the module with the lower model number in slot 1 and the module with the higher number in slot 2. For example, if your chassis includes a FIM-7901E and a FIM-7904E, install the FIM-7901E in chassis slot 1 and the FIM7904E in chassis slot 2. Also, for example, if your chassis includes a FIM-7904E and a FIM-7920E, install the FIM-7904E in chassis slot 1 and the FIM-7920E in chassis slot 2. This applies to any combination of two different interface modules.

FPM-7620E FPM modules

The FPM-7620E modules are hot swappable processor modules that provide FortiOS firewalling and security services. The FPM modules function as workers, processing sessions load balanced to them by the FIM modules.

FPM modules include multiple NP6 network processors and CP9 content processors to accelerate traffic.

back panel

FortiGate-7060E back panel

The FortiGate-7060E back panel provides access to three hot swappable cooling fan trays and the chassis ground connector that must be connected to ground.

FortiGate-7060E back panel

Registering your FortiGate-7060E chassis

FortiGate-7000 series products are registered according to the chassis serial number. You need to register your chassis to receive Fortinet customer services such as product updates and customer support. You must also register your product for FortiGuard services. Register your product by visiting https://support.fortinet.com. To 7

FortiGate-7060E chassis schematic

register, enter your contact information and the serial numbers of the Fortinet products that you or your organization have purchased.

FortiGate-7060E chassis schematic

The FortiGate-7060E chassis schematic below shows the communication channels between chassis components including the management modules (MGMT), the FIM modules (called FIM1 and FIM2) and the FPM modules (FPM3, FPM4, FPM5, and FPM6).

By default MGMT2 is the active management module and MGMT1 is inactive. The active management module always has the IPMB address 0x20 and the inactive management module always has the IPMB address 0x22.

The active management module communicates with all modules in the chassis over the base backplane. Each module, including the management modules has a Shelf Management Controller (SMC). These SMCs support Intelligent Platform Management Bus (IPMB) communication between the active management module and the FIM and FPM modules for storing and sharing sensor data that the management module uses to control chassis cooling and power distribution. The base backplane also supports serial communications to allow console access from the management module to all modules, and 1Gbps Ethernet communication for management and heartbeat communication between modules.

FIM1 and FIM2 (IPMB addresses 0x82 and 0x84) are the FIM modules in slots 1 and 2. The interfaces of these modules connect the chassis to data networks and can be used for Ethernet management access to chassis components. The FIM modules include DP2 processors that distribute sessions over the Integrated Switch Fabric (ISF) to the NP6 processors in the FPM modules. Data sessions are communicated to the FPM modules over the 80Gbps chassis fabric backplane.

 

Chassis hardware information

FPM03, FPM04, FPM05, and FPM06 (IPMB addresses 0x86, 0x88, 0x8A, and 0x8C) are the FPM processor modules in slots 3 to 6. These worker modules process sessions distributed to them by the FIM modules. FPM modules include NP6 processors to offload sessions from the FPM CPU and CP9 processors that accelerate content processing.

Chassis hardware information

This section introduces FortiGate-7060E hardware components and accessories including power requirements and FIM and FPM modules that can be installed in the chassis.

Shipping components

The FortiGate-7060E chassis ships pre-assembled with the following components:

l The 8U FortiGate-7060E chassis l Two FIM modules l Up to four FPM modules l Two management modules installed in the front of the chassis l Four Power Supply Units (PSUs) installed in the front of the chassis l Three cooling fan trays installed in the back of the chassis l One protective front panel installed in the chassis to protect internal chassis components. This panel must be removed before installing FIM and FPM modules. l Four power cords with C15 power connectors l Four power cord management clamps l One set of 4-post rack mounting components l One set of 2-post rack mounting components l One pair of cable management side brackets l Two front mounting brackets l Twenty M4x6 flat-head screws l Six M4x8 large head pan-head screws l Six rubber feet l Two console cables l One RJ-45 Ethernet cable

Optional accessories and replacement parts

The following optional accessories can be ordered separately:

SKU Description
FG-7060E-FAN FortiGate-7060E fan tray.
FG-7060E-PS-AC 1500W AC power supply units (PSUs) for the FortiGate-7060E.

9

Chassis hardware information

SKU Description
FG-7060E-SMM FortiGate-7060E management module.
FG-7060E-CHASSIS FortiGate-7060E chassis including 2x management module, 3x fan trays, and 4x AC PSUs.

You can also order the following:

  • Additional FIM and FPM modules l Transceivers
  • DC PSUs
  • Air Filter kit
  • FPM and FIM single slot cover trays to be installed in empty chassis slots The following optional accessories can be ordered separately:
  • Additional FIM and FPM modules l Transceivers
  • DC PSUs
  • Additional AC PSUs l Additional FAN trays l Air Filter kit
  • FPM and FIM blank panels to be installed in empty chassis slots

Physical description of the FortiGate-7060E chassis

The FortiGate-7060E chassis is a 8U chassis that can be installed in a standard 19-inch rack. The following table describes the physical characteristics of the FortiGate-7060E chassis.

Dimensions (H x W x D) 352.7 x 440 x 650 mm (13.4 x 17.3 x 25.6 in)
Chassis weight completely assembled with FIM and FPM modules installed 205 lbs (93 kg)
Operating Temperature 32 to 104°F (0 to 40°C)
Storage Temperature -31 to 158°F (-35 to 70°C)
Relative Humidity 10% to 90% non-condensing
Noise Level 63db
Input Current and Voltage Range 10-12 A, 100 to 240 VAC (50 to 60 Hz)
Power Support Rating max. 3277W
Supplied Power Supply Units (PSUs) 4 (for 3+1 redundancy)

Cooling fans, cooling air flow, and minimum clearance

Max Power Supply Units (PSUs) 6 (for 3+3 redundancy)
Max Power Consumption 3277W
Average Power Consumption 2330W
Heat Dissipation 11799KJ/hr (11184BTU/hr)

Cooling fans, cooling air flow, and minimum clearance

The FortiGate-7060E chassis contains three hot swappable cooling fan trays installed in the back of the chassis. Each fan tray includes two fans that operate together. When the fan tray LED is green both fans are operating normally. If the LED turns red or goes off, one or both of the fans is not working and the fan tray should be replaced.

Cooling fans, cooling air flow, and minimum clearance

Cooling Fan Tray

Fan

LED

During normal chassis operation, all three fan trays are active and the fan speed is controlled by the active shelf manager. Fan trays are hot swappable. You can replace a failed fan tray while the chassis is operating. To replace a fan tray, unscrew the four retention screws and use the handles to pull the fan tray out of the chassis.

Install a replacement fan tray by sliding it into place in the empty slot and tightening the retention screws. As you slide the new fan into place it will power up and the fan tray LED will light.

The other fan trays will continue to operate and cool the chassis as a fan tray is being removed and replaced. However an open fan tray slot will result in less air flow through the chassis so do not delay installing the replacement fan tray.

Optional Air Filters

Cooling air flow and required minimum air flow clearance

When installing the chassis, make sure there is enough clearance for effective cooling air flow. The following diagram shows the cooling air flow through the chassis and the locations of fan trays. Make sure the cooling air intake and warm air exhaust openings are not blocked by cables or rack construction because this could result in cooling performance reduction and possible overheating and component damage.

FortiGate-7060E cooling air flow and minimum air flow clearance

Most cool air enters the chassis through the chassis front panel and all warm air exhausts out the back. For optimal cooling allow 100 mm of clearance at the front and back of the chassis and 50 mm of clearance at the sides. Under these conditions 80% of cooling air comes from the front panel air intake and 20% from the left and right side panels and 100% exits out the back. Side clearance is optional and chassis cooling will be sufficient if no side clearance is available.

Optional Air Filters

You can purchase an optional NEBS compliant air filter kit that includes a front filter that fits over the front of the chassis and two filters for the side cool air intakes. These filters are not required for normal operation but can be added if you require air filtration.

The air filters should be inspected regularly. If dirty or damaged, the filters should be disposed of and replaced.

The air filters can be fragile and should be handled carefully.

Power Supply Units (PSUs) and supplying power to the chassis

Power Supply Units (PSUs) and supplying power to the chassis

The FortiGate-7060E chassis front panel includes four hot swappable AC or DC PSUs. At least three PSUs (1, 2, and 3) must be connected to power. Power supplies 4 to 6 are backup power supplies that provide 3+1 , 3+2, and 3+3 redundancy. See FortiGate-7060E front panel on page 5 for locations of the PSUs.

All PSUs should be connected to AC power. To improve redundancy you can connect each power supply to a separate power source.

Use a C15 Power cable, supplied with the chassis, to connect power to each PSU C16 power connector. C15/C16 power connectors are used for high temperature environments and are rated up to 120°C.

To remove a PSU from the chassis, press the latch towards the handle until the PSU is detached then pull it out of the chassis. Insert a replacement PSU into the chassis and slide it in until the latch locks into place. Then connect the PSU to AC power. You can do this while the chassis is operating as long as at least three PSUs remain connected to power.

AC Power Supply Unit (PSU) showing C16 power connector

Connector

The PSU LED indicates whether the PSU is operating correctly and connected to power. If this LED is not lit check to make sure the PSU is connected to power. If the power connection is good then the PSU has failed and should be replaced.

Connecting the FortiGate-7060E chassis to ground

The FortiGate-7060E chassis includes a ground terminal on the rear the bottom of the FortiGate-7060E back panel. The ground terminal provides two connectors to be used with a double-holed lug such as Thomas & Betts PN 54850BE. This connector must be connected to a local ground connection. You need the following equipment to connect the FortiGate-7060E chassis to ground:

  • An electrostatic discharge (ESD) preventive wrist strap with connection cord.
  • One green 6 AWG stranded wire with listed closed loop double-hole lug suitable for minimum 6 AWG copper wire, such as Thomas & Betts PN 54850BE.

Power Supply Units (PSUs) and supplying power to the chassis

To connect the FortiGate-7060E chassis to ground

  1. Attach the ESD wrist strap to your wrist and to an ESD socket or to a bare metal surface on the chassis or frame.
  2. Make sure that the chassis and ground wire are not energized.
  3. Connect the green ground wire from the local ground to the ground connector on the FortiGate-7060E chassis.
  4. Secure the ground wire to the chassis.
  5. Optionally label the wire GND.

Turning on FortiGate-7060E chassis power

Connect AC power to PSUs 1, 2, 3, and 4. Once the FortiGate-7060E chassis is connected to power the chassis powers up. If the chassis is operating correctly, the LEDs on the PSUs and fans should be lit. As well, the LEDs on the FortiGate-7060E management module should be lit.

When the chassis first starts up you should also hear the cooling fans operating.

In addition, if any modules have been installed in the chassis they should power on and their front panel LEDs should indicate that they are starting up and operating normally.

 

 


Viewing all articles
Browse latest Browse all 2380

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>